Math 210C Lecture 11 Notes

Daniel Raban

April 24, 2019

1 Additive and Abelian Categories

1.1 Additive categories

Definition 1.1. An additive category C is a category such that

1. For $A, B \in \mathcal{C}$, $\operatorname{Hom}_{\mathcal{C}}(A, B)$ is an abelian group under some operation + such that for any diagram

$$A \xrightarrow{f} B \xrightarrow{g_1} C \xrightarrow{h} D$$

in \mathcal{C} , $h \circ (g_1 + g_2) \circ f = h \circ g_1 \circ g + h \circ g_2 \circ f$.

- 2. C has a zero object 0.
- 3. C admits finite coproducts.

Example 1.1. Ab is an additive category.

Example 1.2. Let R be a ring. R-Mod is an additive category.

Example 1.3. The full subcategory of *R*-Mod of finitely generated *R*-modules is additive.

Example 1.4. The category of topological abelian groups with continuous homomorphisms is additive.

Lemma 1.1. An additive category \mathbb{C} admite finite product. In fact, for $A_1, A_2 \in \mathcal{C}$, there are natural isomorphisms $A_1 \times A_2 \cong A_1 \amalg A_2$. For the inclusion morphisms $\iota_i : A_i \to A_1 \amalg A_2$ and projection morphisms $p_i : A_i \times A_2 \to A_i$, we have $p_i \circ \iota_i = \operatorname{id}_{A_i}, p_i \circ \iota_j = 0$ for $i \neq j$, and $\iota_1 \circ p_1 + \iota_2 \circ p_2 = \operatorname{id}_{A_1 \amalg A_2}$.

Proof. We have the ι_i s. define $p_i : A_1 \amalg A_2 \to A_i$ by

$$p_i \circ \iota_j = \begin{cases} \mathrm{id}_{A_i} & i = j \\ 0 & i \neq j \end{cases},$$

which exists by the universal property of the coproduct:

Then $(\iota_1 \circ p_1 + \iota_2 \circ p_2) \circ \iota_1 = \iota_1 \implies \iota_1 \circ p_1 + \iota_2 \circ p_2 = \mathrm{id}_{A_1 \amalg A_2}$ by the universal property of the coproduct.

Given $B \in \mathcal{C}$ and $g_i : B \to A_i$, set $\psi = \iota_1 \circ g_1 + \iota_2 \circ g_2 : B \to A_1 \amalg A_2$. Then $p_i \circ \psi = g_i$. If $\theta : B \to A_1 \coprod A_2$ is such that $p_i \circ \theta = g_i$, then $\theta = (\iota_1 \circ p_1 + \iota_2 \circ p_2) \circ \theta = \iota_1 \circ g_1 + \iota_2 \circ g_2 = \psi$.

Definition 1.2. $A_1 \oplus A_2 = A_1 \amalg A_2 \cong A_1 \times A_2$ is the **biproduct** (or **direct sum**) of A_1 and A_2 in \mathcal{C} .

Definition 1.3. Let A be an object in an additive category C. By the universal property of the product, there is a **diagonal morphism** Δ_A :

and a **codiagonal morphism** ∇_A :

Lemma 1.2. Let C be additive, let $f, g : A \to B$ be morphisms, and let $f \oplus g : A \oplus A \to B \oplus B$ be induced by the universal property. Then $f + g = \nabla_B (f \oplus g) \circ \Delta_A$.

Definition 1.4. A functor $F : \mathcal{C} \to \mathcal{D}$ between additive categories is **additive** if for all $A, B \in \mathcal{C}, F : \operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{D}}(F(A), F(B))$ is a group homomorphism.

Example 1.5. If \mathcal{C} is additive, $h^A : \mathcal{C} \to Ab$ with $h^A(B) = \operatorname{Hom}_{\mathcal{C}}(B, A)$ is contravariant. Here, the hom sets are now abelian groups. The functor h^A is additive.

Example 1.6. If N is a right R-module, let $t_N : R - \text{mod} \to \text{Ab send } t(M) = M \otimes_R N$ and $f \mapsto f \otimes_R \text{id}_N$. The functor t_N is additive.

Lemma 1.3. $F : \mathcal{C} \to \mathcal{D}$ is additive if and only if F preserves biproducts; i.e. for $A_1, A_2 \in \mathcal{C}, F(A_1 \oplus A_2) \to F(A_1) \oplus F(A_2)$ and $F(A_1) \oplus F(A_2) \to F(A_1 \oplus A_2)$ are inverse isomorphisms.

Proof. (\implies) : $F(\iota_i) \circ F(p_i) = F(\iota_i \circ p_i) = F(\operatorname{id}_{A_i}) = \operatorname{id}_{F(A_i)}$. If $i \neq j$, then $F(\iota_i \circ p_j) = F(0) = 0$. Also,

$$F(\iota_1) \circ F(p_1) + F(\iota_2) \circ F(p_2) = F(\iota_1 \circ p_1 + \iota_2 \circ p_2) = F(\mathrm{id}_{A_1 \oplus A_2}) = \mathrm{id}_{F(A_1 \oplus A_2)}$$

(\Leftarrow) F preserves biproducts, so for $f, g : A \to B$ in \mathcal{C} , $F(f \oplus g) = F(f) \oplus F(g)$. So, by the lemma (twice),

$$F(f+g) = F(\nabla_B \circ (f \oplus g) \circ \Delta_A)$$

= $F(\nabla_B) \circ F(f \oplus g) \circ F(\Delta_A)$
= $\nabla_{F_B} \circ (F(f) \oplus F(g)) \circ \Delta_{F(a)}$
= $F(f) + F(g).$

Lemma 1.4. A morphism in an additive category that admits kernels (resp. cokernels) is a monomorphism (resp. epimorphism) if and only if it has kernel = 0 (resp. cokernel = 0).

Proof. If $f : A \to B$ is a monomorphism, then $\iota : \ker(f) \to A$ is a monomorphism such that $f \circ \iota = 0$. Since f is a monomorphism, $\iota = 0$. Since ι is a monomorphism as well, we get ker f = 0.

The other direction is an exercise.

1.2 Abelian categories

Proposition 1.1. Let C be an additive category that admits kernels and cokernels. If $f: A \to B$ is a morphism in C, then

- 1. $\operatorname{im}(f) \cong \operatorname{ker}(B \to \operatorname{coker}(f)),$
- 2. $\operatorname{coim}(f) \cong \operatorname{coker}(\ker(f) \to A).$

Definition 1.5. An **abelian category** is an additive category that admits all kernels and cokernels and in which every morphism is strict (i.e. $\operatorname{coim}(f) \to \operatorname{im}(f)$ is an isomorphism for all f).

Example 1.7. The category *R*-Mod is abelian. If $f : A \to B$ in *R*-mod, then $\operatorname{coim}(f) = A/\ker(f) \cong \operatorname{im}(f)$.

Example 1.8. Grp is not an abelian category because it is not additive. The Hom sets are not groups.

Example 1.9. The category of finitely generated *R*-modules need not be abelian. If $I \subseteq R$ is an ideal which is not finitely generated and $f : R \to R/I$, then $\ker(f) = I$ in *R*-mod, which is not finitely generated.

Example 1.10. The category of topological abelian groups is not abelian. Let $\iota : \mathbb{Q} \to \mathbb{R}$ be the inclusion map using the discrete topology on \mathbb{Q} and the usual topology on \mathbb{R} . Then $\operatorname{coim}(\iota) = \mathbb{Q}$ and $\operatorname{im}(\iota) = \mathbb{R}$, so these are not isomorphic; that is, ι is not strict.

Proposition 1.2. If C is small and D is abelian, then $\operatorname{Fun}(C, D)$ is abelian.